The role of de novo catecholamine synthesis in mediating methylmercury-induced vesicular dopamine release from rat pheochromocytoma (PC12) cells.
نویسندگان
چکیده
The purpose of this study was to characterize methylmercury (MeHg)-induced dopamine (DA) release from undifferentiated pheochromocytoma (PC12) cells and to examine the potential role for DA synthesis in this process. MeHg caused a significant increase in DA release that was both concentration- and time-dependent. DA release was significantly increased by 2µM MeHg at 60min and by 5µM MeHg at 30min; 1µM MeHg was without effect. Because DA release induced by 5µM MeHg was associated with a significant percentage of cell death at 60 and 120min, 2µM MeHg was chosen for further characterization of release mechanisms. MeHg-induced DA release was attenuated but not abolished in the absence of extracellular calcium, whereas the vesicular content depleting drug reserpine (50nM) abolished release. Thus, MeHg-induced DA release requires vesicular exocytosis but not extracellular calcium. MeHg also increased intracellular DA and the rate of DA storage utilization, suggesting a role for DA synthesis in MeHg-induced DA release. The tyrosine hydroxylase inhibitor α-methyltyrosine (300µM, 24h) completely abolished MeHg-induced DA release. MeHg significantly increased DA precursor accumulation in cells treated with 3-hydroxybenzylhydrazine (10µM), revealing that MeHg increases tyrosine hydroxylase activity. Overall, these data demonstrate that MeHg facilitates DA synthesis, increases intracellular DA, and augments vesicular exocytosis.
منابع مشابه
Tityus zulianus venom induces massive catecholamine release from PC12 cells and in a mouse envenomation model.
Scorpion envenomation is a public health problem in Venezuela, mainly produced by Tityus discrepans (TD) and Tityus zulianus (TZ). Accidents by these two species differ clinically. Thus, TZ envenomation is associated with high mortality in children due to cardiopulmonary disorders, as a result of, excessive amounts of plasma catecholamines (Epinephrine) release from adrenal medulla, probably vi...
متن کاملFurther characterization of dopamine release by permeabilized PC12 cells.
Rat pheochromocytoma cells (PC12) permeabilized with staphylococcal alpha-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC12 cells. Permeabilization with alpha-toxin or digitonin and stimulation o...
متن کاملMelatonin regulates catecholamine biosynthesis by modulating bone morphogenetic protein and glucocorticoid actions.
Melatonin is functionally involved in the control of circadian rhythm and hormonal secretion. In the present study, we investigated the roles of melatonin in the interaction of catecholamine synthesis with adrenocortical steroids by focusing on bone morphogenetic protein (BMP)-4 expressed in the adrenal medulla using rat pheochromocytoma PC12 cells. Melatonin treatment significantly reduced the...
متن کاملEffects of a novel antihypertensive drug, cilnidipine, on catecholamine secretion from differentiated PC12 cells.
Effects of a novel dihydropyridine type of antihypertensive drug, cilnidipine, on the regulation of the catecholamine secretion closely linked to the intracellular Ca2+ were examined using nerve growth factor (NGF)-differentiated rat pheochromocytoma PC12 cells. By measuring catecholamine secretion with high-performance liquid chromatography coupled with an electrochemical detector, we showed t...
متن کاملStimulation of catecholamine biosynthesis via the PKC pathway by prolactin-releasing peptide in PC12 rat pheochromocytoma cells.
We have previously shown that prolactin-releasing peptide (PrRP) stimulates catecholamine release from PC12 cells (rat pheochromocytoma cell line). However, it is not known whether PrRP also affects catecholamine biosynthesis. Thus, we examined the effect of PrRP on catecholamine biosynthesis in PC12 cells. PrRP31 (>10 nM) and PrRP20 (>100 nM) significantly increased the activity and expression...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 133 1 شماره
صفحات -
تاریخ انتشار 2013